

Daily Tutorial Sheet 11

Numerical Value Type for JEE Main

This molecule has two (three centre two electron bonds)

127.(1) $[Cu(H_2O)_4]SO_4 \cdot H_2O$

Only one water molecule is hydrogen bonded to sulphate ion in $CuSO_4 \cdot 5H_2O$.

$$\begin{bmatrix} H_2O & \bar{O} \\ H_2O & Cu^{2+} & OH_2 \\ OH_2 \end{bmatrix} \qquad \bar{\bar{O}} S \begin{matrix} \delta^- & \delta^+ \\ \bar{O} & --- \\ \delta^- & \delta^+ \\ O & --- \\ H \end{matrix} O^{\delta-}$$

- 128.(3) $\ensuremath{\mathsf{PCl}}_5$ has trigonal bipyramidal shape including 3-equitorial and 2-axial bonds.
- In $\,{\rm C}_2$, there are two $\,\pi$ -bonding molecular orbitals which are completely filled. 129.(2)
- $N_2(14): \sigma_{1s}^2 \sigma_{1s}^{2*} \sigma_{2s}^2 \sigma_{2s}^{2*} (\pi_x^2 = \pi_y^2) \sigma_{2pz}^2$ 130.(4)

There are 4 non-bonding electrons.

131.(2)
$$\pi^* \left[\begin{array}{c} + & - \\ - & + \end{array} \right]$$

There are two nodal planes in it.

133.(4)
$$Xe$$
 O This molecule has four $(p\pi - d\pi)$ bonds.

134.(4)
$$O = P \bigcirc O \bigcirc P = O$$
 P_4O_{10} has $4P = O$ bonds

135.(8)
$$O = C = C = C = O$$

There are eight covalent bonds in C_3O_2 .

136.(4) In ice, each H₂O molecule forms four hydrogen bonds.

137.(1)
$$\overset{\text{H}}{\longrightarrow}$$
 C = C = C $\overset{\text{H}}{\searrow}$

Only middle carbon atom lies in sp hybrid state.

Species having bond angle equal to or less than 109°28' and also can act as Lewis base are: 138.(5)

- **139.(4)** N_2^+ , O_2 , B_2 , N_2^{2-} have symmetrical electronic distribution in their HOMO and are also paramagnetic.
 - $N_2^{\scriptscriptstyle +}$ paramagnetic and symmetrical electronic distribution in their HOMO.
 - $\mathrm{O}_2\,$ paramagnetic and symmetrical electronic distribution in their HOMO.
 - $\rm B_2\,$ paramagnetic and symmetrical electronic distribution in their HOMO.
 - N_2^{2-} paramagnetic and symmetrical electronic distribution in their HOMO.
 - O_2^{2-} diamagnetic and symmetrical electronic distribution in their HOMO.
 - C_2 diamagnetic and symmetrical electronic distribution in their HOMO.
 - C_2^{2-} diamagnetic and symmetrical electronic distribution in their HOMO.
- **140.(7)** $B(OMe)_2$ and HCHO can not form H-bond.

Solutions | Workbook-1 22 Chemical Bonding- I & II